There is currently an unexplained source of methane on Mars for which, one potential explanation is the presence of microbial life. On Earth, microbes known as methanogens produce methane as a byproduct of their growth. Many ground studies have shown that methanogens can survive the low temperatures, low pressure, and dry conditions on Mars. However, the effects of radiation and microgravity have not been studied. Outcomes of this work are also be useful for the asteroidal biomining community which aims to use methanogens to produce fuel from organic material on asteroids as an in-situ source of fuel.
I started and contributed to an experiment, MMARS, which flew on the International Space Station (ISS) in February 2017 and simulated the Martian environment to test if methanogens can grow in these conditions. A second experiment launched in June 2018 and is currently on ISS as the ISU payload Hydra2. Project participants have included the International Space University, the University of Strasbourg, and the University of New South Wales and sponsorship from Eurometropole, Space Tango, Airbus, Space Application Services, and Groupama.